师资队伍

夏玉先
发布日期:2023-10-09    作者:

undefined




姓 名:夏玉先


个人简介











教育背景


1997.10-2000.11 英国Bath大学,获生物化学博士学位

1988.09-1991.07 西南农业大学,获作物遗传育种硕士学位

1981.09-1985.07 四川农业大学, 获林学学士学位



工作经历


2000.12-至今,重庆大学,教授

1996.10-1997.09,英国Bath大学,访问学者

1991.08-1996.09,西南农业大学,讲师、副教授

1985.08-1988.08,四川南充林业研究所,助理工程师


研究领域


分子微生物学、昆虫病理学、微生物分子育种。


人才称号


教育部新世纪人才

重庆市百名杰出科技领军人才


表彰奖励


2020年度重庆大学优秀教师;

2010年度中国侨界贡献奖(创新成果);

2009年度重庆市技术发明一等奖,排名第一;

2007年获得国务院政府特殊津贴。


学术兼职


[1] 重庆大学生物学一级学科博士点学术带头人;

[2] 重庆市微生物学科带头人;

[3] 国家标准委员会生物农药分委会副秘书长;

[4] 重庆市“杀虫真菌农药工程技术研究中心”主任;

[5] 重庆市功能基因与调控技术重点实验室主任;

[6]《中国生物防治学报》期刊副主编;

[7]《Frontiers in Microbiology》期刊编委。


社会兼职


[1] 重庆市政府参事;

[2]重庆市科技特派员;

[3]农业农村部玉米草地贪夜蛾生物防控专家组副组长;

[4]农业农村部豇豆病虫害生物防控专家组副组长;

[5]农业农村部专家指导委员会委员。


科研项目


[1] 国家自然科学基金项目面上项目——金龟子绿僵菌广谱抗真菌肽MaAFP1的结构解析及生物合成途径研究。项目编号:32270207,2023.1.1-2026.12.31,54万元。

[2] 科技部国家重点研发计划(课题)——配套综合防治新技术体系建立与应用。项目编号:2017YFD0201208,2017.7.1-2020.12.31,417万元。

[3] 国家自然科学基金项目面上项目——精氨酸代谢途径调控蝗绿僵菌产孢方式转换的作用机制。项目编号:31972330,2020.1.1-2023.12.31,57万元。

[4] 国家自然科学基金专项基金应急管理项目——β-1,3-葡聚糖识别蛋白在东亚飞蝗感知其体表病原真菌中的作用。项目编号:31972330,2016.1.1-2016.12.31,18万元。

[5] 中央高校基本科研业务费科研平台与成果培育专项——绿色高效杀虫真菌农药菌株选育、产品研制及应用。项目编号:2020CDCGJ007,2020.1.1-2020.12.31,10万元。

[6] 横向科研项目自然科学类——杀虫真菌农药研制。项目编号:1042012920130178,2013.3.14-2017.3.31,600万元。

[7] 专利实施许可——一种杀虫绿僵菌菌株及其应用。项目编号:H20190108,2018.7.1-2029.12.31,200万元。

[8] 横向科研项目自然科学类——金龟子绿僵菌CQMa421防病促生机理研究。项目编号:H20190865,2019.9.30-2024.12.31,200万元。


代表性论文


[1] Luo YX, Yan X, Xia YX*, Cao YQ*. Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum. Applied Microbiology & Biotechnology. 2023

[2] Li MF, Wang SQ, Kang LH, Xu F, Lan X, He M, Jin K*, Xia YX*. Arginine metabolism governs microcycle conidiation by changing nitric oxide content in Metarhizium acridum. Applied Microbiology and Biotechnology. 2023, 107(4):1257–1268.

[3] Zhang W*, Xie M, Eleftherianos I, Mohamed A, Cao Y, Song B, Zang LS, Jia C, Bian J, Keyhani NO*, Xia Y*.. An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity. Journal of Advanced Research, 2023 (48)1-6.

[4] Li CC, Xu DX, Hu MW, Zhang QP, Xia YX*, Jin K*. MaNCP1, a C2H2 Zinc Finger Protein, Governs the Conidiation Pattern Shift through Regulating the Reductive Pathway for Nitric Oxide Synthesis in the Filamentous Fungus Metarhizium acridum. Microbiology Spectrum. 2022, 10(3): e0053822.

[5] Wen ZQ, Xia YX*, Jin K*. MaSln1, a conserved histidine protein kinase, contributes to conidiation pattern shift independent of the MAPK pathway in Metarhizium acridum. Microbiology Spectrum. 2022, 10(2): e0205121.

Li CC, Xia YX*, Jin K*. The C2H2 Zinc Finger Protein MaNCP1 Contributes to Conidiation through Governing the Nitrate Assimilation Pathway in the Entomopathogenic Fungus Metarhizium acridum. Journal of Fungi. 2022, 8(9): 942.

[6] Li CC, Xia YX*, Jin K*. N-terminal zinc fingers of MaNCP1 contribute to growth, stress tolerance, and virulence in Metarhizium acridum. International Journal of Biological Macromolecules. 2022, 216: 426–436.

[7] Song L, Xue XN, Wang SQ, Li J, Jin K*, Xia YX*. MaAts, an Alkylsulfatase, Contributes to Fungal Tolerances against UV-B Irradiation and Heat-Shock in Metarhizium acridum. Journal of Fungi. 2022, 8(3): 270.

[8] Song DX, Jin YM, Shi YH, Xia YX*, Peng GX*. The carbon catabolite repressor CreA is an essential virulence factor of Metarhizium acridum against Locusta migratoria. Pest Management Science. 2022, 78(8): 3676–3684.

[9] Song DX, Cao YQ, Xia YX*. MaNsdD regulates conidiation negatively by inhibiting the AbaA expression required for normal conidiation in Metarhizium acridum. Environmental Microbiology. 2022, 24(7): 2951–2961.

[10] Li CC, Zhang QP, Xia YX*, Jin K*. MaNmrA, a negative transcription regulator in nitrogen catabolite repression pathway, contributes to nutrient utilization, stress resistance, and virulence in entomopathogenic fungus Metarhizium acridum. biology-basel. 2021, 10(11): 1167.

[11] Li CC, Zhang QP, Xia YX*, Jin K*. MaAreB, a GATA transcription factor, is involved in nitrogen source utilization, stress tolerances and virulence in Metarhizium acridum. Journal of Fungi. 2021, 7(7): 512.

[12] Li J, Xie JQ, Zeng DY, Xia YX*, Peng GX*. Effective control of Frankliniella occidentalis by Metarhizium anisopliae CQMa421 under field conditions. Journal of Pest Science. 2021, 94: 111–117.

[13] Peng GX, Xie JQ, Guo R, Keyhani NO, Zeng DY, Yang PY, Xia YX. Long-term field evaluation and large-scale application of a Metarhizium anisopliae strain for controlling major rice pests. Journal of Pest Science. 2021, 94(3): 969–980.

[14] Wen ZQ, Tian HT, Xia YX*, Jin K*. MaPmt1, a protein O-mannosyltransferase, contributes to virulence through governing the appressorium turgor pressure in Metarhizium acridum. Fungal Genetics and Biology. 2020, 145: 103480.

[15] Zhao TT, Wen ZQ, Xia YX*, Jin K*. The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum. Applied Microbiology and Biotechnology. 2020, 104(9): 4005–4015.

[16] Zhang MG, Wei QL, Xia YX*, Jin K*. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Current Genetics. 2020, 66(2): 397–408.

[17] Jiang ZY,Ligoxygakis P,Xia YX*. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust.  International Journal of Biological Macromolecules. 2020, 165, 1303–1311.

[18] Zhang JJ, Jiang H, Du YR, Keyhani NO, Xia YX*, Jin K*. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. PLoS Pathogens. 2019, 15(8): e1007964.

[19] Zhao TT, Tian HT, Xia YX*, Jin K*. MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum. Current Genetics. 2019, 65(4): 1025–1040.

[20] Gao PP, Jin K*, Xia YX*. The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum. Current Genetics. 2020, 66(1): 141–153.

[21] Gao PP, Li MC, Jin K*, Xia YX*. The homeobox gene MaH1 governs microcycle conidiation for increased conidial yield by mediating transcription of conidiation pattern shift-related genes in Metarhizium acridum. Applied Microbiology and Biotechnology. 2019, 103(5): 2251–2262.

[22] Zhang J, Wang ZL, Keyhani NO, Peng, GX, Jin K*, Xia YX*. The protein phosphatase gene MaPpt1 acts as a programmer of microcycle conidiation and a negative regulator of UV-B tolerance in Metarhizium acridum. Applied Microbiology and Biotechnology. 2019, 103(3): 1351–1362.

[23] Du YR, Jin K*, Xia YX*. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances and virulence in Metarhizium acridum. Applied Microbiology and Biotechnology. 2018, 102: 5611–5623.


开设课程


本科生课程:《发酵工程》

研究生课程:《生物科学研究前沿》、《专业外语》


  招生方向


分子生物学与基因工程、微生物资源开发与利用、环境及农业微生物。


下一篇:吴海波